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Abstract
The structural parameters of the first five coordination shells of an Au bulk obtained from high
accuracy L3-edge extended x-ray absorption fine structure (EXAFS) spectra in the temperature
range 20–300 K are reported. Good agreement with previously reported studies is found. The
effective second and third order force constants evaluated using EXAFS data are compatible
with those calculated from phonon dispersion curves. A careful comparison of the variations of
the EXAFS first shell distance with x-ray diffraction data provided the mean squared relative
displacement of the atomic vibrations perpendicular to the first interatomic bond. An alternative
new approach that is useful in achieving this parameter when x-ray diffraction data are not
available is proposed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Very accurate temperature dependent extended x-ray absorp-
tion fine structure (EXAFS) measurements of bulk materials
can give information on their general thermal properties and
in particular on their thermal expansion coefficient. Thermal
expansion is a direct fingerprint of the anharmonicity of
the interatomic potential that gives rise to an increase in
the average interatomic distance with temperature [1]. The
main experimental method used to measure the thermal
expansion of a solid at a microscopic level is x-ray diffraction,
which directly provides the thermal behavior of the lattice
parameters [2]. In some cases, like nanoparticles with very
small dimensions (lower than 2 nm), such a method cannot
be applied; in these cases EXAFS is the only way to get such
information [3].

However, the evaluation of the thermal expansion from
EXAFS data requires particular care, because specific effects
due to the influence of the atomic vibrations perpendicular to
the bond direction [4–6] must be taken into account.

As a matter of fact, EXAFS measures the thermal
expansion of the average distance between neighboring atoms
(‘true thermal expansion’, 〈| �r2 − �r1|〉) while Bragg diffraction
measures the thermal behavior of the difference of average

positions (‘apparent bond expansion’, |〈r2〉 − 〈r1〉|) [7]. The
main difference between these two quantities is due to the
atomic thermal vibrations perpendicular to the atomic bonds
(�u⊥) [8–10]. There is no simple way to measure such a
quantity, so up to now it has been determined by comparing the
different thermal behaviors given by diffraction and EXAFS
data. In order to get the true thermal expansion using only
the EXAFS data an independent determination of �u⊥ is
needed. Knowledge of �u⊥ is particularly important in
some specific cases. There are some materials, like Si, Ge,
some ceramics and zeolites with framework structures, that, in
specific temperature ranges, show an unusual negative thermal
expansion (NTE): an interatomic distance contraction in one
or even in all directions as the temperature increases [11].
Experimental and theoretical studies on negative thermal
expansion have been and are still being performed [8, 12–17].
Macroscopic thermal expansion is generally considered the
resultant effect of two different competing contributions: a
positive one connected to bond stretching and a negative
one associated with a sort of geometrical tension effect.
The last contribution is connected to the vibrational motions
perpendicular to the bond direction and induces a contraction
of the interatomic distances. In some cases such a contraction
can prevail, giving rise to an overall NTE [18].

0953-8984/09/325404+09$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/32/325404
http://stacks.iop.org/JPhysCM/21/325404


J. Phys.: Condens. Matter 21 (2009) 325404 T Comaschi et al

The aim of the present paper is to give an accurate
determination of �u⊥ for Au bulk by comparing the thermal
behavior of the interatomic distances given by x-ray diffraction
and EXAFS; for this purpose very accurate experimental
spectra and data analysis are needed. It will also be shown that
in the present case a good estimation of �u⊥ can be achieved
using a different procedure that does not require knowledge
of the thermal expansion measured by x-ray diffraction. This
method, based on symmetry considerations, can be very
important in determining �u⊥ when diffraction data are not
available, as in the case of very small particles.

The layout of the paper is as follows. Section 2 is
dedicated to the description of some experimental details of
the x-ray absorption measurements. In section 3 data analysis
of the spectra is described. In section 4 the results of EXAFS
analysis are presented. Sections 5 and 6 are respectively
dedicated to the discussion of results and to the concluding
remarks.

2. Experimental details

X-ray absorption spectra at the Au L3 edge (11 919 eV)
were recorded at the BM08 GILDA beamline of the
European Synchrotron Radiation Facility (ESRF) at Grenoble
(France) [19]. The electron energy and average current of
the storage ring were 6 GeV and 190 mA, respectively.
The sample was a gold foil of 99.97% purity and thickness
5 μm (purchased from Goodfellow Ltd). Two parallel silicon
crystals with flat reflecting (311) faces, detuned to reduce
the harmonics content, were used to monochromatize the x-
ray beam. Spectra were recorded in transmission geometry,
measuring the beam intensity before and after the sample
with two ionization chambers filled with argon. Spectra were
recorded in the temperature range from 20 up to 300 K, using a
liquid helium cryostat; the sample was in a He gas atmosphere,
and the preset temperature was controlled through an electric
heater using a feedback loop. The average acquisition step
between two energy points in the EXAFS region was 4 eV and
the mean integration time was 3 s. At the highest temperatures
two or even three spectra were measured to increase the signal
to noise ratio.

3. Data analysis

EXAFS spectra were extracted from the raw data according
to standard procedures [20]. As a first step a straight line
was subtracted from all spectra by best fitting the pre-edge
region. The threshold energy E0 was determined as the
maximum of the first derivative of each spectrum in the near-
edge region. All spectra were aligned to have within 0.1 eV
the same E0 value of the lowest temperature spectrum; this
procedure is necessary for high accuracy data analysis, because
a 0.1 eV shift in the edge position results in a shift of 0.001 Å
in interatomic distances. The values of the photoelectron
wavenumber k were calculated from the energy origin E0 as

k =
√

2m

h̄2
(E − E0). (1)

Figure 1. EXAFS signals at different temperatures for gold bulk.

The EXAFS signal was determined as χ(k) = [μ(k) −
μ1(k)]/μ0(k), where μ(k) is the experimental absorption
coefficient; μ1(k) is a spline polynomial best fitting the average
behavior of μ(k); μ0(k) is the smooth polynomial function
(μ0(k) = J

d (1 − 8
3 k2a2)), that theoretically describes the

monotonic decrease of the atomic absorption coefficient; d is
the thickness of the sample; the scaling factor J is determined
by normalizing μ0(k) to the experimental absorption at the
edge [21]. The EXAFS spectra multiplied by k are shown in
figure 1.

The k2χ(k) signals were Fourier transformed in the range
k = 2.5–19 Å

−1
. A Gaussian window was used in the

transformation. The corresponding curves in r space are shown
in figure 2; it can be clearly noticed how the magnitude of the
Fourier transform (FT) decreases with increasing temperature.
Once given the fcc structure of gold bulk, the assignment
of the Fourier peaks is straightforward. The first peak,
centered at about 2.75 Å, is due to the 12 first neighbors
in the fcc structure; it is well isolated at all temperatures
from the other peaks, so its contribution can be singled out
by a back-Fourier transform. The other peaks correspond to
the outer coordination shells; they are quite well separated
at low temperatures but progressively merge at increasing
temperatures. They are due to the superposition of single
scattering (SS) as well as to non-negligible multiple scattering
(MS) contributions.

The quantitative data analysis of the first coordination
shell was performed through the method of phase difference
and amplitude ratio [5, 22]; as a matter of fact MS effects
do not contribute to the first coordination shell signal and the
ratio method gives the best possible accuracy. It consists in
the separate analysis of phases and amplitudes of the filtered
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Figure 2. Fourier transforms of EXAFS signals at different
temperatures.

EXAFS signal; as is well known [20], the inverse FT of the
first shell signal given by

kχ(k) = A(k) sin �(k) (2)

provides the generalized amplitude A(k) and phase �(k)

functions of the first shell oscillating EXAFS signal. Both
functions contain terms originating from the scattering of the
photoelectrons and from the structural parameters of the first
coordination shell. In the harmonic approximation the radial
distribution function of atoms around the absorber is well
described by a Gaussian distribution; in this case the phase and
the amplitude functions are given by

�(k) = 2k R + φ(k) (3)

A(k) = S2
0 N A(k)e−2R/λe−2σ 2k2

(4)

where R, N and σ 2, respectively, stand for the distance,
coordination number and Debye–Waller factor of the shell
under consideration (the first coordination shell in the present
case) and are the structural parameters to be determined. S2

0 ,
φ(k), λ and A(k) are non-structural functions and parameters
arising from the physical origin and from the characteristics
of the EXAFS process. In order to eliminate these terms a
reference spectrum of a model compound is needed and the
first shell interatomic distance and the coordination number are
calculated from the amplitude and phase function of the sample
(�s(k) and As(k)) and of the reference compound spectra
(�r(k) and Ar(k)).

Under the hypothesis that the scattering terms are
identical for the sample and for the reference compound,

these calculated functions depend only on the structural
parameters of the specific coordination shell. In the harmonic
approximation it can be shown that [20]

�s(k) − �r(k)

2k
= (Rs − Rr) (5)

ln
As(k)

Ar(k)
= −2k2(σ 2

s − σ 2
r ) + ln

(
Ns(k)

Nr(k)

)
. (6)

When the distribution function is non-Gaussian, the
effective distribution of distances measured by EXAFS
(P(r, k, T ) = ρ(r, T ) exp[−2r/λ(k)]/r 2) can be expanded in
cumulants [23] as∫ ∞

0
P(r, k, T )e2ikr dr = e[∑∞

0 [ (2ik)n Cn (k,T )

n! ]] (7)

where C1 is the mean value of the interatomic distance, C2

is the root mean square of the interatomic distances, C3 is
the asymmetry of the distribution and C4 describes symmetric
deviations from the Gaussian shape; higher order cumulants
can be generally neglected. In this approximation the EXAFS
function χ(k) becomes:

χ(k) = S2
0

k R2
N F(k)e(C0−2C2k2+ 2

3 C4k4+···)

× sin
(
2kC1 − 4

3 C3k3 + · · · + φ(k)
)
. (8)

Taking into account terms up to the fourth order,
equations (5) and (6) become

�s(k) − �r(k)

2k
= �C1 − 2

3
k2�C3, (9)

ln
As(k)

Ar(k)
= −2k2�C2 + 2

3
k4�C4 (10)

where the �Ci are the differences between the i th cumulant
expansion coefficients of the studied and of the reference
sample. In equation (10) the coordination number was assumed
constant (N = 12 in our case).

The typical curves related to phase differences and
logarithms of amplitude ratios obtained from the performed
data analysis are shown in figure 3; the lowest temperature
spectrum recorded at 20 K was used as a reference. These plots
allow us to evaluate the overall quality of the experimental data
as well as the useful k range.

According to equation (9) the phase difference, divided
by k and plotted against k2, should show a linear behavior; its
crossing point with the y-axis and its slope give the difference
of the first and third cumulants �C1 and �C3, respectively. In
the figure we also show the best fits with a straight line, that
give the numerical values for �C1 and �C3. The increase of
both quantities from 20 to 300 K is immediately evident. In a
similar way �C2 and �C4 were determined from the plot of
the logarithms of the amplitude ratios.

The uncertainties were estimated by varying the fitting
ranges. The values of the fourth cumulant are not reported
in in table 1 because at all temperatures an F-test between
the fits performed with and without C4 has shown that it
can be neglected. To check these first shell results we
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Figure 3. Plot of the difference of phases (upper panel) and of the
logarithm of the amplitude ratio (lower panel) as a function of the
square of the wavevector at different temperatures.

analyzed the same data using a second procedure. The inverse
FTs of the first coordination shell at all temperatures were
simulated using theoretical amplitudes and phases provided by
the FEFF8 code [24]; the simulation was then best fitted to the
experimental spectra. In a first run, six free parameters were
fitted, namely the first four cumulants C1–C4, the amplitude
reduction factor S2

0 , which takes into account the intrinsic
photoelectron inelastic scattering, and �E0, the edge energy
mismatch between theory and experiment. Then in a second
run these last two parameters were fixed at the values of 0.97
and 8.0 eV, respectively, at all temperatures; these values are
the mean values found in the first run for all the spectra.
In this way we minimized the number of free parameters
in the fit [17]. This procedure allowed us to determine the
absolute values of the cumulant coefficients; the values relative
to the T = 20 K spectrum of the cumulant coefficients
found with the two different approaches turned out to be in
very good agreement, but, as expected, the first procedure
provided a higher accuracy. The absolute values of the first
three polynomial coefficients Cn(T ) so obtained are reported
in table 1.

Table 1. Values of the first three cumulants of the effective
distribution as a function of T for the first coordination shell of
gold bulk.

Au foil

T (K) C1 (Å) C2 (10−2 Å
2
) C3 (10−3 Å

3
)

20 2.8760(5) 0.170(2) −0.0380(8)
40 2.8759(5) 0.182(2) −0.0383(8)
60 2.8758(5) 0.226(2) −0.0366(7)
70 2.8762(5) 0.242(3) −0.0325(6)
80 2.8764(6) 0.269(2) −0.0267(7)

100 2.8769(6) 0.318(2) −0.0212(7)
120 2.8769(7) 0.362(3) −0.0064(7)
150 2.8783(7) 0.444(3) 0.014(8)
160 2.8789(7) 0.461(3) 0.021(8)
180 2.8794(7) 0.474(3) 0.034(7)
200 2.8794(6) 0.552(3) 0.046(7)
220 2.8817(7) 0.622(2) 0.086(7)
245 2.8812(7) 0.667(3) 0.104(7)
260 2.8822(7) 0.721(3) 0.128(7)
270 2.8825(7) 0.718(3) 0.146(7)
290 2.8824(8) 0.795(3) 0.172(7)
300 2.8849(7) 0.834(3) 0.203(8)

The signals of the higher coordination shells are well
visible in the Fourier transformed spectra of figure 2 above
3 Å; as underlined above, they originate both from SS and
MS contributions. For these shells MS paths are relevant and
cannot be neglected in an accurate data analysis, because in the
fcc structure atoms are arranged in a nearly collinear geometry.
To properly take into account MS contributions, the outer shells
were analyzed through the best fitting of simulated spectra built
up using theoretical phases and amplitudes provided by the
FEFF8 code. For these higher order coordination shells the
standard EXAFS formula was used, which implies a Gaussian
distribution function as usually performed [25, 26]. All SS
and MS paths were considered up to the fifth coordination
shell. The spectra were fitted both in k-space and in r -space,
including in this case FT-peaks up to about 7 Å. To reduce the
number of fitting parameters the following precautions were
taken: (a) all first shell parameters were fixed to the values
obtained from the first shell analysis; (b) the bond lengths of
the higher order shells were all linked to that of the second
sphere according to a fcc structure; (c) coordination numbers
were fixed to the fcc structure values; (d) for MS paths the same
distance for the corresponding SS paths was used. Also in this
case the numerical values of S2

0 and �E0 were fixed using the
same procedure as for the first shell.

Quite a good match between experiment and theory was
obtained both in k and in R space, as shown in figures 4 and 5.
The values obtained at 20 K are reported in table 2.

4. Results

4.1. First coordination shell data analysis

The first coordination shell EXAFS analysis, previously
described, provided the temperature dependence of the first
three cumulants Ci . As is well known, EXAFS does not probe
the true real pair distribution function ρ(r, T ) but an effective
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Figure 4. Experimental EXAFS signals of Au bulk at 20 K (upper
panel) and 300 K (lower panel) and best fit simulated signals
(continuous line). Also the differences between theoretical and
experimental signals (residual) are reported. The oscillating residual
achieved for the 20 K EXAFS signal is due to higher order
coordination shells (bigger than five) not included in the analysis
which give a significant contribution to the experimental χ(k) signal.

Table 2. Coordination numbers (N), distances (R) and
Debye–Waller factors (σ 2) of five higher coordination shells of
Au bulk at 20 K.

Shell N R (Å) σ 2 (10−2 Å
2
)

II 6.0 (fixed) 4.069(7) 0.220(7)
III 24.0 (fixed) 4.984(7) 0.242(7)
IV 2-body 12.0 (fixed) 5.755(7) 0.286(7)
IV 3-body 24.0 (fixed) 5.755(7) 0.277(7)
IV 4-body 12.0 (fixed) 5.755(7) 0.267(7)
V 24.0 (fixed) 6.434(7) 0.287(7)

one (P(r, λ)), given by

P(r, λ, T ) = ρ(r, T )
e−2r/λ

r 2
(11)

where λ is the mean free path of the photoelectron. The
correcting terms arise from the damping of the primary
photoelectron for the inelastic losses and for the finite lifetime
of the core–hole and from the decrease of the photoelectron

Figure 5. Amplitudes and imaginary parts of the Fourier transforms
of the experimental signals at 20 K (upper panel) and 300 K (lower
panel) and the best fitting simulated signals (continuous line).

wavefunction at increasing distances from the absorbing atom.
Accordingly the cumulant coefficients Ci provided by the
above described analysis are those of the effective pair
distribution function. It has been demonstrated [6, 27] that the
cumulant coefficients of the real distribution function, C∗

i , are
well approximated by those of the effective distribution, Ci ,
just excluding C∗

1 which is given by

C1 = C∗
1 − 2C∗

2

C∗
1

(
1 + C∗

1

λ

)
. (12)

Starting from the values of C1 and C∗
2 we calculated C∗

1
assuming different values (6, 9 and 12 Å) for λ; the spread of
the obtained values was very small, less than uncertainties.

In figure 6 we report the temperature dependence of the
mean values of the interatomic distances obtained from the
effective distribution compared with that of the real distribution
calculated using equation (12).

It can be noted that the difference between the two is small
but appreciable: it amounts approximately to 0.01 Å at 300 K.
In the same figure we show also the first shell crystallographic
thermal expansion measured by x-ray diffraction. The small
difference between diffraction and EXAFS data shows why
very accurate spectra and data analysis are needed to observe
this effect.

5
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Figure 6. Temperature behavior of the Au first shell interatomic
distance of the effective (full circles) and of the real distribution
(λ = 9 Å) (empty circles). The values are relative to the T = 20 K
spectrum; the continuous line is the crystallographic thermal
expansion.

In figure 7 the thermal behavior of the second cumulants
�C∗

2 , generally known as the Debye–Waller factor and
indicated as �σ 2, relative to the T = 20 K spectrum, is
shown. The present value are in excellent agreement with
the literature [28–30]; they are slightly different from those
we reported in previous papers [31, 32], mainly because of
the actual higher data quality. It is well known that the
EXAFS Debye–Waller factor is sensitive to both structural
and thermal disorder. Since the structural disorder is constant
with temperature, the thermal disorder can be isolated from the
thermal behavior of the Debye–Waller factors. This thermal
contribution provides information on the dynamical properties
of the absorber–backscatterer pair, namely on the effective
bond stretching force constant between them, and can be used
to determine the strength of the chemical bonds [33]. For
this purpose we performed a fitting of the experimental data
with an Einstein model [9]; the agreement found between
the theoretical model and the experimental data was excellent
(figure 7). The so obtained Einstein frequency ωE was
17.7 THz, in very good agreement with previous results [34].

In a quantum single oscillator approximation, the
oscillator mean frequency ω̄ is related to the second order
effective force constant k0 by k0 = μω̄2 (where μ is the
reduced mass) [33, 35]. The Einstein frequency obtained
from the data, that gives the inverse second moment of the
vibrational phonon spectrum, can be used to determine the
mean frequency ω̄ as

ω̄2 = ηω2
E (13)

provided the factor η is known [36]. To our knowledge no
evaluation of η exists for Au; Vila et al [36] reported the value
of η = 0.73 for Cu, estimated using the Lanczos algorithm
with the LDA prescription for the dynamical matrix. Assuming
that such a value is also valid for Au, which, like Cu, has
a fcc structure, we achieve ω̄ = 12.9 THz; from such a
value of ω̄ we get k0 = 2.35 eV Å

−2 = 37.6 N m−1. This
value is in excellent agreement with that estimated [37] from

Figure 7. Temperature behavior of the Au first shell Debye–Waller
factor �σ 2 relative to the T = 20 K spectrum, obtained from the
ratio method. The black line is the best fit with an Einstein model
while the dashed line is the fit with a correlated Debye model.

Figure 8. Temperature dependence of the third cumulant relative to
the T = 20 K value; the continuous line is the best fit using the
theoretical model (equation (14)).

the experimental phonon dispersion curves of gold bulk k0 =
39.9 N m−1.

The fitting of the same data with a Debye correlated
model (also shown in figure 7), gave a value for the Debye
temperature of �D = 180 ± 4 K; such a value is in agreement
with the values recently reported in literature where it is shown
that the Au Debye temperature ranges from 165 K at low T to
nearly 190 K at high T [38–40].

Figure 8 reports the relative values of the third cumulant
obtained from the data analysis approach used here. Below
100 K the values are very small but different from zero due
to quantum effects and to the zero point motion; above 100 K
the values are no longer negligible and grow with temperature,
showing how the effective distribution progressively deviates
from a Gaussian approximation. According to the above
quoted quantum models [33, 35], to leading order in k3 the

6
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thermal behavior of the third cumulant is given by

C∗
3 (T ) = −2k3(σ0)

4

k0

z2 + 10z + 1

(1 − z)2
+ C∗

3 (0) (14)

where σ 2
0 = h̄

2μω
and z = e− h̄ω

K T .
A best fit of the experimental data to this equation,

assuming for k0 the values reported above, gave for the third
order force constant a value of k3 = −3.1 × 1011 N m−2,
in quite good agreement with the value obtained from the
dispersion curves [41] of Au bulk (k3 = −3.6 × 1011 N m−2).

4.2. Higher order coordination shells

The ratio between the distances of shells II and I was
calculated, and within the experimental errors it is equal to

√
2,

as expected for a fcc structure.
The Debye–Waller factors of the next neighboring shells

were fitted with a correlated Debye model; the Debye
temperature values obtained (170 K) are consistent with that
of the first shell. It is worth noting that the fourth shell data
are characterized by a large correlation between the values of
the single scattering and multiple scattering σ 2s used to fit this
shell.

5. Discussion

The difference between the thermal expansion measured
by EXAFS and by x-ray diffraction, shown in figure 6,
is rather small but not negligible and comes mainly from
the different effect of the atomic thermal vibrations on the
structural parameters measured by the two techniques, i.e. the
interatomic distance and the crystallographic lattice parameter,
respectively.

As a matter of fact, EXAFS spectra are sensitive to the
distances between atoms and atomic vibrations change these
interatomic distances. A relevant parameter is the mean square
of the relative distance generally indicated as MSRD:

MSRD = 〈�u2〉 = 〈| �R1 − �R2|2〉 (15)

where R1 and R2 are the crystallographic positions of atoms
1 and 2. Once fixed for a couple of atoms, the MSRD can be
decomposed into two components, one parallel (�u‖) and one
perpendicular (�u⊥) to the interatomic distance. To first order
〈(�u‖)2〉 does not change the mean interatomic distance; it is
equal to the Debye–Waller factor σ 2 and, as stressed above, it
carries information on the dynamical properties of the atomic
motion. Knowledge of 〈(�u‖)2〉 is required to determine the
cumulant of the real distribution function C∗

1 from the effective
one C1.

On the other hand, the perpendicular MSRD, 〈(�u⊥)2〉,
changes the mean value of the interatomic distance and is
responsible of the difference between the values measured by
EXAFS and by diffraction [4]:

RExafs = RDiffraction + 〈(�u⊥)2〉
2RDiffraction

. (16)

Figure 9. Thermal behavior of 〈�u2
⊥〉 evaluated from equation (16).

The continuous line is the best fit according to a Debye correlated
model while the dashed one is the best according to an Einstein
model.

No experimental technique can measure this quantity
directly, so it can be obtained only from the previous equation
(figure 9). In principle 〈(�u⊥)2〉 gives relevant information
on the eigenvectors of the dynamical matrix additional to
that provided by the parallel MRSD. Moreover it is a crucial
quantity for clarifying the tension effect, which is claimed to
be the origin of NTE in many systems [42].

The fit of the perpendicular 〈(�u⊥)2〉 with an Einstein
model gives the Einstein frequency for vibrational modes
perpendicular to the first shell interatomic distance, i.e. per-
pendicular to the (110) direction and to all the other equivalent
directions. The value found is (ωE)⊥ = 13.6 THz,
i.e. (ω⊥

E /ω
‖
E)exp = 0.77.

Within the Einstein model, the ratio between the Einstein
frequencies for perpendicular and radial motion is given by

ω⊥
E

ω
‖
E

= 2

γ
· coth(βh̄ω⊥

E /2)

coth(βh̄ω
‖
E/2)


 2

γ
(17)

at high temperature. Here γ is the ratio between the
perpendicular and parallel components of the MSRD, γ =
〈�u2⊥〉
〈�u2

‖〉 ; it measures the anisotropy of the relative vibrations.

Vila et al [36] showed that, assuming a simple model based
on a single spring constant, γ is only weakly dependent on
the temperature and that at high temperature in fcc crystals it
amounts to 5

2 . Using such a value in equation (17) we get

ω⊥
E

ω
‖
E

= 2

2.5
= 0.8 (18)

in very good agreement with our experimental value.
An alternative way to justify the ratio (ω⊥

E /ω
‖
E)exp = 0.77

is to consider that provided the above introduced factor η is the
same for parallel and perpendicular motions, the same ratio
0.77 also holds for the mean frequencies of the oscillations
parallel ω̄‖ and perpendicular ω̄⊥ to the (110) direction. For
the high symmetry of the Au crystal, we can also assume

7
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Figure 10. Thermal behavior of the experimental ratio
〈�u2⊥〉
〈�u2‖〉

obtained from data of figures 9 and 7 (empty squares) and from
equation (21) (full circles).

that the mean values of the atomic movements parallel and
perpendicular to the (110) first neighbors direction can be well
approximated by the mean value of the phonon frequencies of
longitudinal ω̄L and transverse ω̄T phonons propagating in the
same direction. For this reason we calculated the mean value of
the frequencies of the longitudinal and transverse branches of
the (110) direction from experimental dispersion curves [38],
also obtaining in this case the value (ω̄T/ω̄L)theor = 0.77.

In figure 10 we report the experimental values we have
found for the γ ratio. The data are rather scattered, but their
mean value is significantly higher than 2.5 (γ̄ = 2.78). Such a
value indicates the presence of an anisotropy higher than that
foreseen on the basis of the mono-dimensional single force
constant oscillator and due essentially to the presence of many
non-independent oscillators. Our experimental value is similar
to those previously obtained for other fcc metals [8, 36, 43].
Fornasini et al [8] estimated for Cu a ratio between 2 and 3 in a
temperature range up to 500 K in agreement with path integral
Monte Carlo simulations, which gives a value of 2.7 [44]. Vila
et al [36] reported a value between 2.17 and 2.5 calculated on
the basis of density functional theory; finally Haug et al [43] in
crystalline Ag experimentally found a value of 2.2 ± 0.7.

Due to the relevance of this parameter for determining the
anisotropy of the relative atomic vibrations in the perpendicular
and parallel directions and taking into account that it is
not always possible to obtain x-ray diffraction data, we
propose here a different procedure to evaluate γ . In the
present case 〈�u2

⊥〉 indicates the MSRD of the atomic
vibration perpendicular to the first shell interatomic bond,
i.e. perpendicular to the (110) direction. The high symmetry
of the fcc lattice states that all directions perpendicular to
(110) one are equivalent, so we can choose one of them to
evaluate 〈�u2

⊥〉. Choosing the (001) direction, which is also
the direction of the second shell, we have that

〈�u2
⊥(110)〉 = 2〈�u2

‖(001)〉 (19)

i.e.
〈�u2

⊥(I shell)〉 = 2〈�u2
‖(II shell)〉. (20)

Figure 11. Thermal behavior of the experimental ratio
〈�u2⊥〉
〈�u2‖〉

obtained for Cu (data were taken from [8]) according to the two
different procedures of calculation used also in the case of Au.

On the basis of this relation, we conclude that it is possible
to evaluate γ as

γ = 2〈�u2
‖(II shell)〉

〈�u2
‖(I shell)〉 . (21)

The values found using this procedure are indicated by the full
circles in figure 10. The result is quite good: γ has again a
mean value of 2.78 (higher than 2) and in addition data are
not as scattered as when using the previous procedure. We
conclude that, at least in the present case, this second procedure
to evaluate γ is reliable and consequently gives a way to
determine 〈(�u⊥)2〉 without knowledge of RDiffraction. We
recall here that knowledge of 〈(�u⊥)2〉 is very important both
to clarify the tension effects in NTE materials and to determine
the crystallographic expansion coefficient from the thermal
behavior of the interatomic distances of EXAFS data. Both
aspects are of relevance in systems like very small clusters,
where diffraction spectra are difficult to measure.

To check the validity of the above described method
to determine 〈(�u⊥)2〉 in other systems we used the same
procedures on the data of metallic copper reported in [8].
As shown in figure 11 in this case as well the two methods
provide results that are in good agreement, showing how in
systems of high symmetry the proposed alternative method for
determining 〈(�u⊥)2〉 is reliable.

6. Conclusions

We have shown how the coupling of high quality EXAFS
spectra recorded at third generation synchrotron radiation
facilities with highly accurate data analysis methods allows
one to obtain relevant physical information on the structural
and dynamical properties of interatomic bonds from EXAFS
spectra. In particular, as already shown in other systems,
comparison of the thermal behavior of the first shell bond
distance with the thermal expansion obtained from x-ray

8
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diffraction data provided the mean squared relative amplitude
of atomic vibrations perpendicular to the bond length, which
is a relevant quantity for fully understanding tension effects.
The alternative method to evaluate such a quantity based only
on EXAFS data, proposed in the present paper, is relevant in
all those systems where x-ray diffraction measurements cannot
be easily performed. More investigations are needed to check
both the validity of the proposed method in systems with
symmetries different from the fcc one and its applicability to
the study of very low-dimensional nanoparticles, where x-ray
diffraction data are usually not available.
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